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Abstract. Difference-in-differences designs build counterfactuals by invoking a
parallel trend assumption, but this may be violated in the presence of invalid con-
trol units. Thus, selecting a control group is vital to ensure proper identification.
We introduce fdid based on (Li, Kathleen T. ”A Simple Forward Difference-in-
Differences Method.” Marketing Science 43, no. 2 (2024): 267-279). We discuss
estimation and inference, document fdid’s syntax, and apply it empirically.
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1 Introduction

For identification, Difference-in-Differences designs (DiD) make some form of a parallel
trends assumption (PTA), assuming a constant difference between the average of the
control group and treated outcome trajectories absent treatment. Unfortunately, DiD’s
PTA is invalid in many realistic scenarios, such as retail Costa et al. (2023), where the
control group average may differ substantially from the treatment group due to inappro-
priate controls. Control group selection has become of interest recently to researchers.
Shi and Huang (2023) extend Hsiao et al. (2012) by developing a forward selected panel
data approach. Synthetic control methods (SCMs, Abadie [2021]) typically rely on a
(usually) convex average of some controls to impute the counterfactual.

To better justify DiD’s PTA, Li (2024) develops the forward DiD method (FDID),
advocating for forward-selection to select the control group. We introduce the fdid

method for Stata. fdid fits in with Stata’s pantheon of program evaluation tools. Like
rcm and synth2 by Yan and Chen (2022, 2023), scul by Greathouse (2022), and sdid by
Clarke et al. (n.d.), fdid uses a subset of controls to estimate the causal impact. Also,
fdid returns the list of selected controls, graphics, and fit statistics. However, fdid is
more user-friendly. rcm, synth2, and allsynth by Wiltshire (2021) all require users to
specify the panel id for the treatment unit and treatment date, whereas fdid simply
requires a dummy variable. fdid has more flexible data requirements, only requiring
outcome data. This is in contrast to SCMs, for example, which frequently depends on
covariates for acceptable pre-treatment fit (Yan and Chen 2022; Amjad et al. 2018) .
fdid is also fast, relying on bivariate OLS for estimation. In contrast, methods such
as fect by Liu et al. (2024) or scul by Greathouse (2022) employ cross validation or
LASSO penalization.
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2 Forward DID

2 Forward Difference-in-Differences

Algorithm 1: Forward Difference-in-Differences

Û0 ← ∅ ;
for k = 0 to N0 − 1 do

for i ∈ N0 \ Ûk do

Estimate y1t = α̂N0
+ ȳÛk∪{i} t ∈ T1 and calculate R2

k(Ûk ∪ {i});
end

Update Ûk+1 ← Ûk ∪
{
argmaxi∈N0\Ûk

R2
k(Ûk ∪ {i})

}
;

end

Set Û∗ ← argmaxk∈{1,...,N0} R
2
k(Ûk);

Compute ŷ01t = α̂Û∗ + ȳÛ∗ ;

return Û∗ and ÂTT Û∗ = 1
T2

∑
t∈T2

(
y1t − ŷ01t(Û

∗)
)

The Model We follow Li (2024)’s exposition, observing N = {1, 2, . . . , N} units where
N has cardinality N = |N |. j = 1 is treated and controls are N0 = N \ {1}. Time
is indexed by t. Denote pre-post-policy periods as T1 = {1, 2, . . . , T0} and T2 = {T0 +

1, . . . , T}, where T = T1 ∪ T2. We use Algorithm 1 to select Û ⊂ N0, or the subset of
controls. Example 1 offers a stylized explanation of Algorithm 1, but we also summarize
it below by quoting almost verbatim from fdid’s help file.

DiD is estimated like y1t = α̂N0
+ ȳN0t t ∈ T1, where ȳN0t := 1

N0

∑
j∈N0

yjt. The

estimated least-squares intercept is computed like α̂N0
:= T−1

1

∑
t∈T1

(y1t − ȳN0t). We
first estimate N0 one-unit DiD submodels using each control, calculating the R-squared
statistic for each submodel. The submodel with the highest R-squared is the first
selected control, Û1. This is also the first “candidate” DiD model. We remove this
selected control from N0. Next, we estimate N0 − 1 two control unit DiD submodels,
where we use the first selected control along with each one of the remaining N0 − 1
controls. Whichever of these N0 − 1 submodels has the highest R-squared statistic is
the second candidate DiD model, with this second selected control being added to U1 to
form Û2. We now remove this selected control from N0. We continue until there are N0

candidate DiD models/R2 statistics. FDID uses the candidate model with the highest

R-squared statistic, Û∗ (we omit the asterisk for simplicity). Post-selection, Li (2024)
estimates FDID like

y1t = α̂Û + ȳÛt t ∈ T1 (1)

where we now exchangeN0 for Û . Denote the FDID predictions as ŷ01t = α̂Û+ȳÛt, where
the pre-treatment periods corresponds to the in-sample fit and the opposite denotes the

out-of-sample counterfactual. Our causal estimand is: ÂTT Û = 1
T2

∑
t∈T2

(
y1t − ŷ01t

)
,

or the average treatment effect on the treated. From Assumption 2.1 of Li (2024) and
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Arkhangelsky et al. (2021, 4094), FDID assumes parallel trends, ŷ01t − ȳÛt = α̂Û + ϵ.1

Example 1. Let N0 = {i1 (Chicago), i2 (Miami), i3 (Phoenix)} be the controls for a
generic treated unit. For (k = 1), we estimate DiD for each control unit in N0 individu-
ally, yielding pre-treatment R2 values: R2

1,1 = 0.60, R2
2,1 = 0.50, and R2

3,1 = 0.23. Since

R2
1,1 = 0.60 is the highest, we update the control set to Û1 = {i1} and R2

k = 0.60. For
(k = 2), we estimate two DiD models using i1 with the remaining controls from {i2, i3},
yielding R2

2,2 = 0.88 and R2
3,2 = 0.68. We select i2 (Miami) and update the control set

to Û2 = {i1, i2} since R2
2,2 = 0.88 is the highest. For (k = 3), using all controls, we get

R2
3,3 = 0.55. The final control set is Û2 = {i1, i2}, as maxk R

2
k = 0.88.

Inference Per Li (2024), our default standard error for the ATT is:

Ω̂ =

[(
T2

T1

)
· T−1

1

∑
t∈T1

v̂21t

]0.5

, v̂ = y1t − ȳÛ − α̂Û (2)

Li (2024) establishes the normal inference theory of the FDID method (see appen-
dices B and D for theoretical derivations). In particular, Li (2024) shows that the
selection algorithm chooses the correct control set as the number of pre-intervention
periods tends to infinity. Li (2024) also allows the number of control units to be very
large, allowing the number of controls to increase with T1. The finite sample properties
are also demonstrated in Appendix E of Li (2024).

3 The fdid command

Users need strongly balanced panel data (see [XT] xtset). sdid eventmust be installed.
Users also need Stata 16 or later.

3.1 Syntax

fdid depvar
[
if

] [
in

]
treated(varname)

[
unitnames(string) gr1opts(string)

gr2opts(string) placebo
]

where depvar is our dependent variable and treated is our dummy for treatment.

3.2 Options

gr1opts: Edits the display options of the observed versus predicted plot.

gr2opts: See the above, except for the plotted pointwise-treatment effect.

1. SCMs generally attempt to match the counterfactual to the pre-treatment trajectory.
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unitnames: The string variable that serves as the value labels (required if the panel id
is not already labeled). Note each string value pair must be uniquely identified.

placebo: Uses the placebo standard error of the ATT from Arkhangelsky et al. (2021)
(500 replications).

3.3 Estimation Results

Matrices
e(results) DID/FDID results e(b) Coefficients
e(V) variance-covariance matrix e(dyneff) dynamic effects
e(series) means/counterfactuals e(setting) pre-treatment periods, treat-

ment date, post-treatment peri-
ods, number of time periods

Macros
e(U) selected controls e(depvar) dependent variable
e(properties) list of properties

4 Empirical Application

We replicate Abadie et al. (2010) for two reasons: firstly, the basic results of DiD are
not in dispute, being quite popular in the econometrics literature for introducing the
SCM or shortcomings of DiD. More importantly, Abadie et al. (2010) explicitly say
DiD’s PTA is invalid. Since the point of FDID is to choose controls such that standard
PTA is more credible, Abadie et al. (2010) presents a good avenue to demonstrate how
fdid is useful for Stata users. We begin with loading in the dataset, obtained from the
syntax from section 6.

use state year treated cigsale id using smoking, clear

The following output from xtdescribe displays the panel setup for smoking.dta.

id: 1, 2, ..., 39 n = 39
year: 1970, 1971, ..., 2000 T = 31

Delta(year) = 1 year
Span(year) = 31 periods
(id*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
31 31 31 31 31 31 31

Freq. Percent Cum. | Pattern
---------------------------+---------------------------------

39 100.00 100.00 | 1111111111111111111111111111111
---------------------------+---------------------------------

39 100.00 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

California is treated in 1989, compared to N0 = 38 states that remain untreated.
Time extends from 1970 to 2000, so T1 = 19 and T2 = 12. Our outcome is the rate of
tobacco consumption per capita. We estimate fdid like
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fdid cigsale, tr(treated) unitnames(state)

Forward Difference-in-Differences T0 R2: 0.988 T0 RMSE: 1.282

-----------------------------------------------------------------------------------
cigsale | ATT Std. Err. t P>|t| [95% Conf. Interval]

-------------+---------------------------------------------------------------------
treated | -13.64671 0.46016 29.66 0.000 -14.54861 -12.74481

-----------------------------------------------------------------------------------
Treated Unit: California
FDID selects Montana, Colorado, Nevada, Connecticut, as the optimal donors.
See Li (2024) for technical details.

We plot the in and out of sample predictions from both DiD and FDID as well as
their control group means.2 The results appear in Figure 1. DiD’s in-sample prediction

Figure 1: Observed, Predicted, and Average Curves

misses the observed in-sample values of California for the first 5 years of the time
series and overestimates them from the mid-1970s until 1989. Abadie et al. (2010) also
remark that in 1988, the rest of the United States has a 27% higher consumption rate
than California. Given DiD’s pre-intervention R2 is equal to 60%, this comports with
Abadie et al. (2010)’s conclusion that that PTA is untenable for all controls. The DiD

ATT is ÂTTN0
= −27.349, a value which is likely overestimated. When we view the

results of xtdidregress by doing mat l e(results) after running fdid, we get a 95%
CI for DiD of [−33.02,−21.68]. Note that xtdidregress uses the robust standard error.

Algorithm 1 chooses 4 control units: Montana, Colorado, Nevada, and Connecticut
(all of which were given weight by the original SCM). The pre-intervention average of
these units is obviously parallel to the pre-trends of California. This fact is supported
by R2

Û
, which says 98.8% of the pre-intervention variance is explained by the αÛ shifted

2. We omit the code in order to save space, but see FDID SJ Rep.do at the first author’s GitHub.
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average of the selected controls. For FDID, ÂTT Û = −13.647, a reduction of DiD’s ATT
by half. FDID’s 95% CI is [−14.55,−12.74]. Another point to note is how FDID’s in-
sample PTA seems to hold without any covariates or predictors, suggesting that FDID’s
data requirements are, in some cases, more relaxed compared to SCM whose methods
typically rely on predictors for convergence (Amjad et al. 2018; Vives-i-Bastida 2022),
or DiD where analysts sometimes make a conditional PTA.

5 Conclusion

We wish to make clear the central limitation of fdid: its PTA must still be valid. As per
usual, researchers should check if the standard DiD PTA is plausible first. Researchers
who have found DiD’s PTA to be invalid should then check if PTA holds for FDID
in the pre-intervention period. Li (2024) notes that if researchers have a treated unit
whose trend is much steeper than control units, for example, then use of fdid is invalid.
Researchers should consider methods such as factor models or synthetic controls in this
case (Li and Shankar 2024). However, even if FDID’s PTA is plausible, other methods
such as synth2 may also serve as a robustness check.

While fdid is useful, we now highlight FDID’s limitations and opportunities for
development. For staggered adoption, Li (2024) is silent on whether using the not yet
treated controls vs. never treated controls would be preferable, or on how to weight
ATTs across multiple units (Wing et al. 2024). fdid uses the never treated controls
by default and reports Cohort ATTs. We believe more formal investigation of FDID
and how it could be extended to a dynamic staggered adoption is warranted. Also,
some newer methods invoke conditional PTAs where covariates are included (Callaway
and Sant’Anna 2021), or allow for heterogeneous treatment effects. FDID does not
do either at present. FDID also does not account for settings where units may be
treated and then untreated, or where units receive non-binary treatments as discussed
in de Chaisemartin and D’Haultfœuille (2024) and D’Haultfœuille et al. (2023). Li
(2024) notes other control group selection methods may be used such as the recently
user-written classifylasso by Huang et al. (2024) (naturally, a comparison is outside
the scope of our paper). All of these are potential avenues for extension, practically and
theoretically.

We introduced the fdid command whose algorithm selects a control group for DiD.
We overviewed fdid’s syntax and applied it empirically where the classical PTA would
not deliver satisfactory results. Given fdid’s practical benefits, we believe fdid is of
use to Stata users who are interested in treatment effect estimation.

6 Program Installation
net from "https://raw.githubusercontent.com/jgreathouse9/FDIDTutorial/main"
net install fdid
net get fdid, replace
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